Powered By Blogger

Rabu, 19 Maret 2014

WHAT IS A THERMOCOUPLE? 

 In 1821, Thomas Seebeck discovered if metals of two different materials were joined 
at both ends and one end was at a different temperature than the other, a current was 
created. This phenomenon is known as the Seebeck effect and is the basis for all 
thermocouples. 


 T1 T2 



 A thermocouple is a type of temperature sensor, which is made by joining two 
dissimilar metals at one end. The joined end is referred to as the HOT JUNCTION. 
The other end of these dissimilar metals is referred to as the COLD END or COLD 
JUNCTION. The cold junction is actually formed at the last point of thermocouple 
material 

 Positive leg 

 Hot junction Cold Junction 
(Joined End) 

 Negative leg 

 Certain combinations of metals must be used to make up the thermocouple pairs. 

 If there is a difference in temperature between the hot junction and cold junction, a 
small voltage is created. This voltage is referred to as an EMF (electro-motive force) 
and can be measured and in turn used to indicate temperature. 

 The voltage created by a thermocouple is extremely small and is measured in terms of 
millivolts (one millivolt is equal to one thousandth of a volt). In fact, the human body 
creates a larger millivolt signal than a thermocouple. 

 To establish a means to measure temperature with thermocouples, a standard scale of 
millivolt outputs was established. This scale was established using 32 deg. F (0°C) as 
the standard cold junction temperature (32 deg. F (0°C) = 0 millivolts output). THERMOCOUPLE THEORY 
 Page 2


COLD JUNCTION COMPENSATION 

 As we mentioned earlier, the last point of thermocouple material is known as the cold 
junction. The amount of output the t/c produces is determined by the difference 
between the hot junction and the cold junction temperatures. The cold junction 
temperature must be known to accurately determine the temperature. 

 Lets look at the following examples; 
 If we had a thermocouple in a heat treat furnace and wanted to know what 
temperature it was in that furnace, we could attach a voltmeter to the cold junction 
and measure the voltage. 
 Let’s say that the furnace is operating at 1000 deg. F. and it is 100 deg. F at the 
cool end of the T/C. Since we said that a T/C measures the difference between the 
hot and cold junctions, our formula would be: 

 1000 (hot junction) - 100 (cold junction) = 900 deg. F. 

 There seems to be a problem since we said that the furnace was at 1000 deg. F. 
This brings us to COLD JUNCTION COMPENSATION. 

 COLD JUNCTION COMPENSATION is usually done automatically by the measuring 
instrument. The instrument measures the temperature at the cold junction and adds it 
back to the equation. 

 1000 (hot junction) - 100 (cold junction) = 900 deg. F + 100 deg. F 
 (cold junction temp) = 1000 deg F 

 This way the instrument indicates the actual temperature of the hot junction. 

 This COLD JUNCTION compensator is usually located at the terminals on the back 
of the indicating instrument and you must maintain T/C material all the way to this 
point. 

 For a thermocouple to function properly, there must be no other metals used between 
the hot junction and the cold junction. If wire is needed to connect the T/C to the 
indicating instrument, the leadwire must be made of the same material as the T/C. 

 It is acceptable to use terminal blocks and lugs made of plain copper in a 
thermocouple circuit as long as the positive and negative terminals are at the same 
temperature. (Example: terminal blocks in heads or spade lugs on wire) 

 If you were to use plain copper wire instead of T/C extension wire to run to the 
instrument, your cold junction would be formed at the junction between the copper 
and the T/C wire. This junction would most likely not be at the same temperature as 
the back of the instrument where the compensator is located. This would then create 
an error in the indicated temperature. THERMOCOUPLE THEORY 
 Page 3


 If a customer were to use the wrong T/C extension wire, the same problem could 
appear. This is why we must use the correct T/C extension wire on our assemblies. 

 It is also acceptable to have a third metal in the hot junction as long as that metal is at 
the same temperature as the thermocouple material. 


REFERENCE TABLES 

 There are printed tables that show the temperature vs. millivolt output figures. These 
reference tables are all based on the cold junction being at the freezing temperature of 
water (32 deg F or 0 deg C). 
 We use these tables in our Certification Lab along with ice baths to make our cold 
junctions at 32 deg. F. 
 Based on ASTM E-230 

THERMOCOUPLE TYPES 

 All thermocouples have a corresponding color code per ASTM E-230 (replaces ANSI 
MC96.1) 
 Consult the Pyromation catalog page GEN-6 for a complete list of American color 
codes 

BASE METAL THERMOCOUPLES 

 Base metal thermocouples are known as Types E, J, K, T and N and comprise the 
most commonly used category of Thermocouple. The conductor materials in base 
metal thermocouples are made of common and inexpensive metals such as Nickel, 
Copper and Iron. 

 Type E: The Type E thermocouple has a Chromel (Nickel-10% Chromium) 
positive leg and a Constantan (Nickel- 45% Copper) negative leg. Type E has a 
temperature range of -330 to 1600F, has the highest EMF Vs temperature values of 
all the commonly used thermocouples, and can be used at sub-zero temperatures. 
Type E thermocouples can be used in oxidizing or inert atmospheres, and should not 
be used in sulfurous atmospheres, in a vacuum or in low oxygen environments where 
selective oxidation will occur. The color code for TYPE E wire is purple and red. 

 Type J: The Type J thermocouple has an Iron positive leg and a Constantan 
negative leg. Type J thermocouples can be used in vacuum, oxidizing, reducing and 
inert atmospheres. Due to the oxidation (rusting) problems associated with the iron 
leg, care must be used when using this thermocouple type in oxidizing environments 
above 1000F. The temperature range for Type J is 32 to 1400F and it has a wire 
color code of white and red. THERMOCOUPLE THEORY 
 Page 4

 Type K: The Type K thermocouple has a Chromel positive leg and an Alumel 
(Nickel- 5% Aluminum and Silicon) negative leg. Type K is recommended for use 
in oxidizing and completely inert environments. Because it’s oxidation resistance is 
better than Types E, J, and T they find widest use at temperatures above 1000F. 
Type K, like Type E should not be used in sulfurous atmospheres, in a vacuum or in 
low oxygen environments where selective oxidation will occur. The temperature 
range for Type K is -330 to 2300F and it’s wire color code is yellow and red. 

 Type N: The Type N thermocouple has a Nicrosil (Nickel-14% Chromium- 1.5% 
Silicon) positive leg and a Nisil (Nickel- 4.5% Silicon- .1% Magnesium) negative 
leg. Type N is very similar to TYPE K but is less susceptible to selective oxidation 
effects. Type N should not be used in a vacuum or in reducing atmospheres in an 
unsheathed condition. The temperature range is 32-2300 deg F and its wire color code 
is orange and red. 

 Type T: The Type T thermocouple has a Copper positive leg and a Constantan 
negative leg. Type T thermocouples can be used in oxidizing, reducing or inert 
atmospheres, except the copper leg restricts their use in air or oxidizing environments 
to 700F or below. The temperature range for Type T is -330 to 700F and it’s wire 
color code is blue and red. 

NOBLE METAL THERMOCOUPLE TYPES 

 Noble Metal Thermocouples are another category of thermocouples and are made of 
the expensive precious metals Platinum and Rhodium. There are three types of noble 
metal thermocouples: 
 Type B (Platinum/Platinum-30% Rhodium) 
 Type R (Platinum/Platinum-13% Rhodium) 
 Type S (Platinum/Platinum-10% Rhodium) 

 Types R and S have temperature ranges of 1000 to 2700F and Type B thermocouples 
have a temperature range of 32 to 3100F. 

 As can be seen above, the difference between these three thermocouples is the amount 
of Rhodium contained in the negative leg. Types R and S can exhibit excessive grain 
growth in the platinum when exposed to the higher end of its temperature range. The 
increased amount of Rhodium in the Type B thermocouple helps to reduce the grain 
growth problem allowing for a slightly increased temperature range. 

 Noble metal thermocouples are intended for use in oxidizing or inert atmospheres. 
They must not be used in reducing atmospheres or in applications containing metallic 
or nonmetallic vapors. Noble metal thermocouples are soft and prone to being 
damaged if mishandled. These thermocouple assemblies are usually assembled in 
ceramic insulators and supplied with ceramic protection tubes. Noble metals should 
never be supplied in metal protection tubes only. The color code for Types R and S is 
black and red, and the color code for Type B is gray and red. THERMOCOUPLE THEORY 
 Page 5


Refractory Metal Thermocouples 

 Refractory Metal Thermocouples are the last category of thermocouple that 
Pyromation manufactures. These thermocouples are made of the exotic metals 
Tungsten and Rhenium, which are expensive, difficult to manufacture, brittle, and 
must be handled carefully. There are three types of refractory metal thermocouples: 
 Type G (Tungsten/Tungsten 26% Rhenium) 
 Type D (Tungsten 3% Rhenium/Tungsten 26% Rhenium) 
 Type C (Tungsten 5% Rhenium/Tungsten 26% Rhenium) 

 (Note: The Type designations listed for the refractory thermocouples are industry 
standard designations, not standardized thermocouple types) 

 All of these types have a temperature range of 32-4200 deg F. Refractory metal 
thermocouples are normally used in vacuum furnaces beyond the temperature 
capabilities of platinum. They are seldom used below approximately 2500F since 
there are other thermocouple types more suited for the lower temperatures. Refractory 
metal thermocouples and their associated refractory metal protection tubes must not 
be used in the presence of oxygen at temperatures above 500°F. 

 The color code for refractory thermocouples are: 
 Type G: White with blue tracer and red 
 Type D: White with yellow tracer and red 
 Type C: White with red tracer and red 

LIMITS OF ERROR 

 Tolerances now covered by ASTM E-230 
 T/C wire is manufactured, then tested and sorted by accuracy. 
 Refer to Pyromation catalog page GEN-5 

THERMOCOUPLE RULES OF THE ROAD 

 The most important rule to remember when manufacturing thermocouples is that red 
is always negative! (For domestic manufacturers) 

 The second most important rule to remember is that red is always negative! 
Regardless of the T/C type, the red leg is the negative leg. This is different than your 
car battery or a DC circuit. 

 Each thermocouple type has a different color code, which is shown on the handout. 
This will allow you to make sure that you are using the right calibration plug or jack 
with the right T/C. 
 THERMOCOUPLE THEORY 
 Page 6

 It is very important to memorize the color codes for types K, J, T, E, and N. 

 Thermocouple types J and K have one leg, which is magnetic. This is one of the 
easiest ways to determine polarity if there is no color-coding to help (as with MgO 
T/C’s). If you were to refer to the THERMOCOUPLE TYPE COLOR CODE catalog 
handout, it has a column that indicates the magnetic leg. 

 On the type J thermocouple, the POSITIVE leg is strongly magnetic. According to the 
handout, the white leg would be the magnetic leg. 

 With the type K T/C, the RED OR NEGATIVE leg is the magnetic leg. It is not as 
strongly magnetic and can be hard to detect on smaller diameter wire. 

 These are the only two types of thermocouples that have a magnetic leg so if a magnet 
sticks to one of the wires, you know it is type K or J. 

 Color codes and magnetic legs are just tools to help assure that our connections are 
made properly. 


THERMOCOUPLE MYTHS 

 There should never be a third metal in the hot junction 
To create a thermocouple junction, all that is needed is to electrically short the ends 
together. Butting the wire ends against a metal surface will create a junction. 
Remember, that the thermocouple signal is generated over the entire length of wire. 

 You must use special limits of error extension wire if your thermocouple is special 
limits 
This is not necessary if the extension wire is outside the temperature gradient area. 
Although the signal is generated over the entire length of wire, the important area is 
the gradient between the hot and ambient areas. 

 Non-thermocouple materials cannot be used in the thermocouple circuit. 
It is permissible to use non-thermocouple materials as terminal blocks or splices as 
long as there is no temperature gradient across these devises. 

 I can get an average temperature just by wiring my thermocouples in parallel. 
To get a true average, all thermocouples in a parallel circuit must be the same length 
or have the same resistance. 

 The largest possible extension wire should be used to connect a thermocouple. 
This phrase used to be true 30 years ago before there was solid-state electronics. The 
old instruments were Voltage based circuits and resistance was critical. The newer 
solid-state electronics are current based so extension wire resistance is not important. 

Tidak ada komentar:

Posting Komentar